Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series
Authors
Abstract:
A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued functions in the Laplace domain in the form of general Dirichlet series is used. The final solutions are presented in the form of finite series involving forward and backward travelling wave functions of the d’Alembert type for a finite time interval. This elegant method of Laplace transform inversion used for the special class of problems at hand eliminates the need for finding singularities of the complex-valued functions in the Laplace domain and it does not need utilising the tedious calculations of the more conventional methods which use complex integration on the Bromwich contour and the techniques of residue calculus. Justification for the solutions is then considered. Some illustrations of the exact solutions as time-histories of stress or displacement of different points in the medium due to excitations of arbitrary form or of impulsive nature are presented to further investigate and interpret the mathematical solutions. It is shown via illustrations that the one-dimensional wave motions in multi-layered elastic media are generally of complicated forms and are affected significantly by the changes in the geometrical and mechanical properties of the layers as well as the nature of the excitation functions. The method presented here can readily be extended for three-dimensional problems. It is also particularly useful in seismology and earthquake engineering since the exact time-histories of response in a multi-layered medium due to arbitrary excitations can be obtained as finite sums.
similar resources
a time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
An Adaptive Physics-Based Method for the Solution of One-Dimensional Wave Motion Problems
In this paper, an adaptive physics-based method is developed for solving wave motion problems in one dimension (i.e., wave propagation in strings, rods and beams). The solution of the problem includes two main parts. In the first part, after discretization of the domain, a physics-based method is developed considering the conservation of mass and the balance of momentum. In the second part, ada...
full textGeneral series solution for finite square-well energy levels for use in wave-packet studies
We develop a series solution for the bound-state energy levels of the quantum-mechanical one-dimensional finite square-well potential. We show that this general solution is useful for local approximations of the energy spectrum ~which target a particular energy range of the potential well for high accuracy!, for global approximations of the energy spectrum ~which provide analytic expressions of...
full textJulia Lines of General Random Dirichlet Series
In this paper, we consider a random entire function f(s, ω) defined by a random Dirichlet series ∑∞ n=1Xn(ω)e −λns whereXn are independent and complex valued variables, 0 6 λn ր +∞. We prove that under natural conditions, for some random entire functions of order (R) zero f(s, ω) almost surely every horizontal line is a Julia line without an exceptional value. The result improve a theorem of J....
full textDirichlet series and approximate analytical solutions of MHD flow over a linearly stretching sheet
The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...
full textSeries Acceleration Formulas for Dirichlet Series with Periodic Coefficients
Series acceleration formulas are obtained for Dirichlet series with periodic coefficients. Special cases include Ramanujan’s formula for the values of the Riemann zeta function at the odd positive integers exceeding two, and related formulas for values of Dirichlet L-series and the Lerch zeta function.
full textMy Resources
Journal title
volume 51 issue 1
pages 169- 198
publication date 2018-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023